Wednesday, November 16, 2011

Daya


Daya dari bolam lampu ini dinyatakan oleh besarnya watt listrik yang diperlukan
Daya dalam fisika adalah laju energi yang dihantarkan atau kerja yang dilakukan per satuan waktu. Daya dilambangkan dengan P. Mengikuti definisi ini daya dapat dirumuskan sebagai:
P= \frac{W}{t}\,
di mana
P adalah daya
W adalah kerja, atau energi
t adalah waktu
Daya rata-rata (sering disebut sebagai "daya" saja bila konteksnya jelas) adalah kerja rata-rata atau energi yang dihantarkan per satuan waktu. Daya sesaat adalah limit daya rata-rata ketika selang waktu Δt mendekati nol.
P = \lim_{\Delta t\rightarrow 0} \frac{\Delta W}{\Delta t} = \lim_{\Delta t\rightarrow 0} P_\mathrm{avg} \,

Bila laju transfer energi atau kerja tetap, rumus di atas dapat disederhanakan menjadi:
P = \frac{W}{t} = \frac{E}{t},
di mana W, E adalah kerja yang dilakukan, atau energi yang dihantarkan, dalam waktu t (biasanya diukur dalam satuan detik).
Satuan daya dalam SI adalah watt.


Sumber daya

Sumber daya adalah suatu nilai potensi yang dimiliki oleh suatu materi atau unsur tertentu dalam kehidupan. Sumber daya tidak selalu bersifat fisik, tetapi juga non fisik.
Sumber daya ada yang dapat berubah (berubah ke bentuk yang lain, baik menjadi semakin besar maupun hilang maupun ada pula sumber daya yang kekal (selalu tetap).

Sumber daya hayati

Sumber daya hayati adalah salah satu sumber daya dapat pulih (renewable resources) yang terdiri atas flora dan fauna. Sumber daya hayati secara harfiah dapat diartikan sebagai sumberdaya yang mempunyai kehidupan dan dapat mengalami kematian. Jenis-jenis sumber daya hayati diantaranya adalah pohon, ikan, rumput laut, plankton, zooplankton, fitoplankton, harimau, semut, cacing, rumput laut, terumbu karang, lamun, dan sebagainya.

 

 

 

Energi

Key Issues in Energy
Ditinjau dari perspektif fisika, setiap sistem fisik mengandung (secara alternatif, menyimpan) sejumlah energi; berapa tepatnya ditentukan dengan mengambil jumlah dari sejumlah persamaan khusus, masing-masing didesain untuk mengukur energi yang disimpan secara khusus. Secara umum, adanya energi diketahui oleh pengamat setiap ada pergantian sifat objek atau sistem. Tidak ada cara seragam untuk memperlihatkan energi;
SATUAN
Satuan SI untuk energi dan kerja adalah joule (J), dinamakan untuk menghormati James Prescott Joule dan percobaannya dalam persamaan mekanik panas. Dalam istilah yang lebih mendasar 1 joule sama dengan 1 newton-meter dan, dalam istilah satuan dasar SI, 1 J sama dengan 1 kg m2 s−2.

Transfer energi

Kerja

Kerja didefinisikan sebagai "batas integral" gaya F sejauh s:
 W = \int \mathbf{F} \cdot \mathrm{d}\mathbf{s}
Persamaan di atas mengatakan bahwa kerja (W) sama dengan integral dari dot product gaya (\mathbf{F}) di sebuah benda dan infinitesimal posisi benda (\mathbf{s}).

Jenis energi

Energi kinetik

Energi kinetik adalah bagian energi yang berhubungan dengan gerakan suatu benda.
E_k = \int \mathbf{v} \cdot \mathrm{d}\mathbf{p}
Persamaan di atas menyatakan bahwa energi kinetik (Ek) sam dengan integral dari dot product "velocity" (\mathbf{v}) sebuah benda dan infinitesimal momentum benda (\mathbf{p}).

 

Energi potensial

Energi potensial Berlawanan dengan energi kinetik, yang adalah energi dari sebuah sistem dikarenakan gerakannya, atau gerakan internal dari partikelnya, energi potensial dari sebuah sistem adalah energi yang dihubungkan dengan konfigurasi ruang dari komponen-komponennya dan interaksi mereka satu sama lain. Jumlah partikel yang mengeluarkan gaya satu sama lain secara otomatis membentuk sebuah sistem dengan energi potensial. Gaya-gaya tersebut, contohnya, dapat timbul dari interaksi elektrostatik (lihat hukum Coulomb), atau gravitasi.

 

Energi internal

Energi internal adalah energi kinetik dihubungkan dengan gerakan molekul-molekul, dan energi potensial yang dihubungkan dengan getaran rotasi dan energi listrik dari atom-atom di dalam molekul. Energi internal seperti energi adalah sebuah fungsi keadaan yang dapat dihitung dalam sebuah sistem.

 

 

Sumber energi skala kecil

Ada banyak sumber energi skala kecil yang umumnya tidak dapat ditingkatkan untuk ukuran industri. Daftar pendek:
  • PIEZO listrik kristal menghasilkan tegangan kecil setiap kali mereka mekanis cacat. Getaran dari mesin dapat merangsang listrik PIEZO kristal, seperti dapat tumit sepatu
  • Beberapa watches sudah didukung oleh kinetika, dalam hal ini gerakan lengan
  • Elektrokenetika menghasilkan listrik dari energi kinetik air yang dipompa melalui saluran kecil
  • Khusus antena dapat mengumpulkan energi dari gelombang radio liar atau bahkan secara teori cahaya ( EM radiasi).



Usaha (Kerja) Dan Energi

Jika sebuah benda menempuh jarak sejauh S akibat gaya F yang bekerja pada benda tersebut maka dikatakan gaya itu melakukan usaha, dimana arah gaya F harus sejajar dengan arah jarak tempuh S.
USAHA adalah hasil kali (dot product) antara gaya den jarak yang ditempuh.
W = F S = |F| |S| cos q
q = sudut antara F dan arah gerak

Satuan usaha/energi : 1 Nm = 1 Joule = 107 erg
Dimensi usaha energi: 1W] = [El = ML2T-2


Beberapa jenis energi di antaranya adalah:
1.   ENERGI KINETIK (Ek)

Ek trans = 1/2 m v2

Ek rot = 1/2 I
w2

m = massa
v = kecepatan
I = momen inersia
w = kecepatan sudut

2.   ENERGI POTENSIAL (Ep)

Ep = m g h

h = tinggi benda terhadap tanah

3.   ENERGI MEKANIK (EM)

EM = Ek + Ep

Nilai EM selalu tetap/sama pada setiap titik di dalam lintasan suatu benda.
Pemecahan soal fisika, khususnya dalam mekanika, pada umumnya didasarkan pada HUKUM KEKEKALAN ENERGI, yaitu energi selalu tetap tetapi bentuknya bisa berubah; artinya jika ada bentuk energi yang hilang harus ada energi bentuk lain yang timbul, yang besarnya sama dengan energi yang hilang tersebut
Ek + Ep = EM = tetap
Ek1 + Ep1 = Ek2 + Ep2


PRINSIP USAHA-ENERGI

Jika pada peninjauan suatu soal, terjadi perubahan kecepatan akibat gaya yang bekerja pada benda sepanjang jarak yang ditempuhnya, maka prinsip usaha-energi berperan penting dalam penyelesaian soal tersebut
W tot = DEk      ®  S F.S = Ek akhir - Ek awal
W tot = jumlah aljabar dari usaha oleh masing-masing gaya
        = W1 + W2 + W3 + .......

D Ek = perubahan energi kinetik = Ek akhir - Ek awal

ENERGI POTENSIAL PEGAS (Ep)
Ep = 1/2 k D x2 = 1/2 Fp Dx
Fp = - k Dx
Dx = regangan pegas
k = konstanta pegas
Fp = gaya pegas

Tanda minus (-) menyatakan bahwa arah gaya Fp berlawanan arah dengan arah regangan x.
2 buah pegas dengan konstanta K1 dan K2 disusun secara seri dan paralel:
seri
paralel
    1      =   1   +   1 
  Ktot       K1       K2
 Ktot = K1 + K2
Note: Energi potensial tergantung tinggi benda dari permukaan bumi. Bila jarak benda jauh lebih kecil dari jari-jari bumi, maka permukaan bumi sebagai acuan pengukuran. Bila jarak benda jauh lebih besar atau sama dengan jari-jari bumi, make pusat bumi sebagai acuan.


Contoh soal :
1. Sebuah palu bermassa 2 kg berkecepatan 20 m/det. menghantam sebuah paku, sehingga paku itu masuk sedalam 5 cm ke dalam kayu. Berapa besar gaya tahanan yang disebabkan kayu ?
Jawab:
Karena paku mengalami perubahan kecepatan gerak sampai berhenti di dalam kayu, make kita gunakan prinsip Usaha-Energi:
F. S = Ek akhir - Ek awal
F . 0.05 = 0 - 1/2 . 2(20)2
F = - 400 / 0.05 = -8000 N
(Tanda (-) menyatakan bahwa arah gaya tahanan kayu melawan arah gerak paku ).


2. Benda 3 kg bergerak dengan kecepatan awal 10 m/s pada sebuah bidang datar kasar. Gaya sebesar 20Ö5 N bekerja pada benda itu searah dengan geraknya dan membentuk sudut dengan bidang datar (tg a = 0.5), sehingga benda mendapat tambahan energi 150 joule selama menempuh jarak 4m.
Hitunglah koefisien gesek bidang datar tersebut ?

Jawab:
Uraikan gaya yang bekerja pada benda:
Fx = F cos a = 20Ö5 = 40 N
Fy = F sin a = 20Ö5 . 1Ö5 = 20 N
S Fy = 0 (benda tidak bergerak pada arah y)
Fy + N = w ®  N = 30 - 20 = 10 N
Gunakan prinsip Usaha-Energi
S Fx . S = Ek 
(40 - f) 4 = 150 ®  f = 2.5 N


3. Sebuah pegas agar bertambah panjang sebesar 0.25 m membutuhkan gaya sebesar 18 Newton. Tentukan konstanta pegas dan energi potensial pegas !
Jawab:
Dari rumus gaya pegas kita dapat menghitung konstanta pegas:
Fp = - k D®  k = Fp /Dx = 18/0.25 = 72 N/m
Energi potensial pegas:
Ep = 1/2 k (D x)2 = 1/2 . 72 (0.25)2 = 2.25 Joule

No comments:

Post a Comment